
Exploring Expert Cognition for Attributed Network Embedding

Xiao Huang,† Qingquan Song,† Jundong Li,‡ Xia Hu†
†Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA 77843

‡Computer Science and Engineering, Arizona State University, Tempe, AZ, USA 85281
{xhuang,qqsong,xiahu}@tamu.edu,jundongl@asu.edu

ABSTRACT
Attributed network embedding has been widely used in modeling
real-world systems. The obtained low-dimensional vector represen-
tations of nodes preserve their proximity in terms of both network
topology and node attributes, upon which different analysis al-
gorithms can be applied. Recent advances in explanation-based
learning and human-in-the-loop models show that by involving
experts, the performance of many learning tasks can be enhanced. It
is because the experts have a better cognition in the latent informa-
tion such as domain knowledge, conventions, and hidden relations.
It motivates us to employ experts to transform their meaningful cog-
nition into concrete data to advance network embedding. However,
learning and incorporating the expert cognition into the embedding
remains a challenging task. Because expert cognition does not have
a concrete form, and is difficult to be measured and laborious to
obtain. Also, in a real-world network, there are various types of ex-
pert cognition such as the comprehension of word meaning and the
discernment of similar nodes. It is nontrivial to identify the types
that could lead to a significant improvement in the embedding. In
this paper, we study a novel problem of exploring expert cogni-
tion for attributed network embedding and propose a principled
framework NEEC. We formulate the process of learning expert cog-
nition as a task of asking experts a number of concise and general
queries. Guided by the exemplar theory and prototype theory in
cognitive science, the queries are systematically selected and can be
generalized to various real-world networks. The returned answers
from the experts contain their valuable cognition. We model them
as new edges and directly add into the attributed network, upon
which different embedding methods can be applied towards a more
informative embedding representation. Experiments on real-world
datasets verify the effectiveness of NEEC.

1 INTRODUCTION
Attributed networks are pervasive in real-world systems such as
social media and protein-protein interaction networks, where both
node dependencies and rich attribute information describing the
properties of nodes are available. Attributed network embedding [14,
18] provides an efficient way to model the two information sources
jointly. It aims to map each node into a low-dimensional vector

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159655

representation such that its proximity in terms of both topological
structure and node attributes are well preserved. The learned rep-
resentations could be applied to and advance the performance of
many real-world mining tasks, such as node classification [34, 49],
community detection [27], and anomaly detection [22].

The helpfulness of expert cognition motivates us to investigate
the potential of utilizing it to learn a more informative embedding
representation. We define the expert cognition as the intelligence-
related information that the experts know beyond the data, such
as the understanding of domain knowledge [45], the awareness of
conventions [7], and the perception of latent relations. An example
would be the comprehension of bias in sampling, i.e., meteorol-
ogists know that tornadoes were more likely to be recorded in
areas with more population [7]. Existing work such as explanation-
based learning [8] and human-in-the-loop models [12, 17] suggest
that the involvement of experts could increase the performance of
many learning tasks. The expert cognition plays an essential role in
advancing these data analysis. Since most existing network embed-
ding algorithms are data-driven, we are motivated to explore how
to take advantage of the expert cognition to enhance the perfor-
mance of embedding. Sentiment analysis is a typical example of the
utilization of expert cognition, which has been successfully applied
to improve the performance of different recommendations [48].
In product review platforms such as Epinions and Slashdot, items
are recommended to users based on their historical reviews. It has
been shown that most reviews convey different levels of sentiment
polarization [13], and the expert-created sentiment lexicons such
as MPQA and SentiWordNet [37] are widely used to advance the
review analysis and recommendation [9, 48].

Although some efforts have been devoted to directly learning
expert cognition from the existing human-generated data [9], such
concrete related data is still often limited and could be in different
forms. Motivated by the success of active learning [35, 36] and
interactive data mining [1, 12], in this paper, we propose to ex-
plore expert cognition via actively querying the experts. We aim to
convert their abstract cognition into concrete answers, and incor-
porate them into attributed network embedding towards a more
informative low-dimensional representation.

However, actively exploring expert cognition is a nontrivial task,
because of three major challenges as follows. First, expert cognition
does not have a concrete format and is not easy to be measured,
since it is related to the intelligence. Traditional solutions are to
design specific algorithms according to the experts’ understand-
ing [8, 17]. It is hard to be generalized as they involve enormous
engineering experimentations to transform the domain knowledge
to algorithms. Second, in a real-world system, there are usually var-
ious types of expert cognition such as the comprehension of word
meaning and the discernment of missing edges [12]. It is difficult

https://doi.org/10.1145/3159652.3159655

to model all of them, as well as identify the types that could lead
a significant performance gain in the embedding within a limited
number of trials. It is also expensive to design specific models for
different attributed networks and different embedding algorithms.
A general way of modeling the expert cognition is essential. Third,
the expert cognition is laborious to obtain as it involves humans
in the whole process. Given a limited amount of human effort, we
aim to design the queries in an effective way to maximize the to-
tal amount of learned expert cognition. Meanwhile, the returned
answers from the experts could be heterogeneous with the attrib-
uted network. It is desired to have answers that could be easily
incorporated into the embedding.

To bridge the gap, we formally define the problem of exploring
expert cognition for attributed network embedding and study three
research questions. (1) How to design effective, general, and concise
format of queries to save the experts’ efforts? (2) How to select the
most meaningful queries to maximize the total amount of learned
expert cognition, given a limited amount of human effort? (3) How
to quantify the amount of expert cognition that contained in the
returned answers since it is necessary when evaluating the pro-
posed solutions? Following these research objectives, we propose
a general expert cognition learning and formulating framework
NEEC, and our key contributions can be summarized as follows.

• Formally define the problem of exploring expert cognition
for attributed network embedding.
• Present an efficient and concise framework NEEC that could
provide the experts a small number of carefully designed
general and concise queries, and their answers capture expert
cognition systematically and can be directly added into the
network to advance the embedding.
• Develop an effective algorithm to tackle the exploration and
exploitation balancing in expert cognition learning.
• Empirically evaluate the effectiveness, generalizability, and
efficiency of NEEC on three real-world datasets.

2 PROBLEM STATEMENT
Notations: We use a boldface lowercase alphabet to represent a
vector (e.g., u), and a boldface uppercase alphabet to denote a matrix
(e.g., U). The transpose of a matrix is displayed as U⊤, and the ith
row of the matrix U is written as ui . We use ui j to represent the
(i, j)th element of the matrix U. We use I to represent the identity
matrix. We use S(·) to denote the node proximity defined by the rows
of a matrix. In this paper, we use cosine similarity as the proximity
measure, and it is straightforward to extend to other measures. The
important symbols are listed in Table 1.

Let G be the adjacency matrix of n connected nodes. The edge
weights in G are set to be non-negative to have physical meanings.
Let A denote the node attribute information matrix. Its ith row
represents the node attributes of node i . Suppose the raw data of A
is human-readable such as the paper abstract or the product review.
For ease of presentation, in this paper, we focus on the undirected
networks and propose a general framework. It can also be directly
applied to the directed networks.

Definition 1 (Expert Cognition) For real-world attributed net-
works, the domain experts often have a better comprehension beyond

Table 1: Main symbols and definitions.

Notations Definitions

n number of nodes in the network
d dimension of the embedding representation
B number of prototype nodes
K number of queries the oracle can answer
ri,k reward obtained from node i at iteration k

G ∈ Rn×n+ weighted adjacency matrix
A ∈ Rn×m+ node attribute information matrix
H ∈ Rn×d final embedding representation

U(G) ∈ Rn×d embedding representation of the network
S(·) ∈ Rn×n node proximity defined by rows of a matrix

the data, such as the understanding of domain knowledge, the aware-
ness of conventions, and the perception of latent relations. We refer
their knowledge on this type of abstract, meaningful, and intelligence-
related information as the expert cognition.

The expert cognition is often valuable but hard to be modeled.
For instance, humans’ comprehension of word meaning is essen-
tial to the analysis of social networks, since texts in social media
could be informal and fast-evolving [13]. However, it is challeng-
ing to generalize and model this comprehension. Another example
could be the experienced doctors’ discernment of similar cases of
illness, which is valuable to patients but difficult to be learned and
performed by computers.

Instead of directly modeling expert cognition, we propose a novel
way to learn it, i.e., querying the experts a number of trials to model
their abstract cognition as concrete answers. The existing related
data is often limited, and it is difficult to design specific models for
different systems as the given data could be in various forms. Thus,
in this paper, we focus on actively learning from the experts. It is
motivated by the success of active learning [36], which has been
shown to be helpful in reducing the efforts of labeling. The key idea
is, if we are allowed to select the nodes for training, a comparable
classification accuracy could be achieved even with fewer training
labels. However, existing methods cannot be applied to our problem
since it is often expensive to obtain concrete labels, such as the
labels in ranking systems or community detection problems. Also,
it is challenging to incorporate labels into the embedding since they
are heterogeneous to the attributed network.

Therefore, we aim to actively explore the expert cognition in a
more general way. We refer the experts as the oracle and formally
define the problem of exploring expert cognition for attributed
network embedding as follows.
Given an attributed network G associated with node attributes A
and corresponding raw data, we aim to seek a d-dimensional vec-
tor representation hi for each node i , such that both the topologi-
cal structure and node attribute proximity could be well preserved
inH. Meanwhile, the system is allowed to learn from the oracle by
performingK queries one by one. Given a limited amount of effort
the oracle could devote, we aim to design the queries in a general
and efficient way to include as much as possible expert cognition
in the K returned answers. As a result, we could incorporate the
answers into the embedding towards a more informative expert
cognition informed representation H.

Oracle
· ·

·

·

·

·

4

2

6

1

3

5

Prototype Nodes:

Query Pool:

1 3

Formulate Expert Cognition as Edges

Contextual Bandit
2 4 5 6

Query
5

1

Cluster 1 Cluster 2

Update the Model of Cluster 2

After K
Queries

!"
!#
!$
!%
!&
!'

d ≪ !

*

Any Embedding
Algorithm

More Informative
Representation

· ·

·

·

·

·

4

2

6

1

3

5

Expert Cognition
Informed Network

Initial Attributed
Network

Figure 1: The overall structure of the proposed Network Embedding with Expert Cognition framework - NEEC.

3 EMBEDDINGWITH EXPERT COGNITION
To efficiently model and assimilate the expert cognition actively
learned from the oracle into attributed network embedding, we
propose the Network Embedding with Expert Cognition frame-
work - NEEC. It has three components as illustrated in Figure 1.
(1) We design a general and concise form of queries to learn ex-
pert cognition from the oracle while greatly save his/her effort. It
allows us to model the meaningful but abstract expert cognition
as systematical answers. (2) We explore novel algorithms for the
two steps to find the top K meaningful queries. The first step aims
to find B representative and distinct nodes as prototypes, and the
second step iteratively selects K nodes from the remaining nodes
with the largest amount of expected learned expert cognition. (3)
We formulate the returned K answers from the oracle as cognition
edges and add them into the initial network structure. Figure 1
illustrates an example on a network of six nodes. We first select
B = 2 nodes as prototypes (in red), and set the remaining nodes (in
blue) as a query pool. In each query, we select a node i (e.g., i = 5)
to query. The oracle needs to indicate a node from the prototypes
(e.g., j = 1) that is the most similar to the queried node i . All these
answers will be added into the network structure in the form of
weighted edges, named as cognition edges (red dotted lines). In
Figure 1, the queried nodes i = 4, 5, 6 are more similar to prototype
node j = 1, so we add weighted edges between them. With these
cognition edges, different attributed network embedding methods
could be directly applied to the expert cognition informed network
towards a more informative low-dimensional representation H.

3.1 Prototype-based Form of Queries
Given a limited amount of effort the oracle could devote, simpler
queries would allow us to have a larger number of queries K . Mean-
while, we expect each query to be more effective in exploring the
expert cognition from the oracle. These two aspects often contra-
dict each other, since complex and specific queries tend to capture
more information, but are both hard to design and answer.

An intuitive solution is to query the latent relations of node pairs
to model the expert cognition as identified missing edges. However,
it might not be efficient since the total number of queries K is quite
limited compared with the total number of node pairs, i.e.,K ≪

(n
2
)
.

It is also difficult to select the K most meaningful node pairs from
all the unconnected pairs. Our proposed solution is to learn a more
general type of node relations from the oracle, and in a systematical
way to increase the total amount of learned expert cognition.

3.1.1 Learning Expert Cognition with Prototypes. Based on the
exemplar theory and prototype theory in cognitive science, we
propose the prototype-based form of queries.

Theory 1 (Exemplar Theory) [28] In psychology, humans cog-
nize new stimuli by comparing with exemplars already have in mem-
ory, and classify objects based on their similarity to these exemplars.

Theory 2 (Prototype Theory) [33] For a category of stored
exemplars in humans’ memory, there exists an abstract average of all
members called the prototype, and humans perform categorizations
based on prototypes when experiencing new objects.

Motivated by the process of humans cognizing new objects, we
first select B nodes and define them as the prototypes of B categories
respectively. Then we classify K other selected nodes into these B
categories according to the oracle’s cognition. Such classification
process could capture the oracle’s comprehensive comprehension of
the K nodes. In the end, we formulate this valuable comprehension
as cognition edges defined as follows.

Definition 2 (Prototype Node)We select a small number (i.e.,
B) of representative nodes to serve as prototypes in the oracle’s memory,
and refer them as prototype nodes.

Definition 3 (Cognition Edge) In each query, we add an edge
дi j with a predefined weight γ between the newly selected node i and
its most similar prototype node j. We refer дi j as a cognition edge. If
there is already an edge between nodes i and j in the initial network,
we will add the weight γ into this edge.

Figure 1 illustrates the basic idea of the prototype-based form of
queries. Initially, nodes 1 and 3 are selected as prototype nodes. In
each query, we select another new node i to query the oracle. He/she
needs to determine node i is more similar to which prototype,
based on his/her understanding of nodes’ human-readable raw data
and expertise. A cognition edge would be added to the network
according to the returned answer. It models the category of node i
in the oracle’ cognition. After K queries, we could directly apply
an embedding algorithm to the expert cognition informed network
towards a more informative unified representation.

3.1.2 Analysis of Prototype-based Form of Queries. We have
proposed to learn the expert cognition with prototype nodes and
model it as cognition edges. It enjoys several nice properties as
follows. First, evaluating similarity takes a much smaller amount of
human effort comparing to other technical tasks such as labeling.
The prototype-based form of queries are general and simple with
no specific similarity value required. Second, the data for some
specific nodes might be limited, but domain experts’ knowledge

and cognition could help. For example, researchers can understand
the main idea of papers by reading the abstracts, while these short
paragraphs are often too limited to computers. Third, the oracle
only needs to check B + K nodes in total, which are selected from
a pool with size n. It is much smaller than

(n
2
)
.

3.2 Prototype Node Selection Algorithm
We propose two algorithms for the prototype node selection to
handle different scenarios. The key idea is to make prototype nodes
representative and avoid being too similar to each other, such that
the oracle could easily distinguish them.

The first algorithm is k-medoids, motivated by the work of [29].
This algorithm is designed for the network with rich initial data.
It aims to select B prototype nodes that cluster the entire n nodes
into B distinct groups. An updating rule that similar to the k-means
algorithm is employed. It first selects B nodes randomly, and then
alternatively conducts the following two proceeds until no change
could be made. (1) Assign nodes to their nearest prototype nodes’
clusters based on node attribute similarity. (2) For each node, com-
pute the sum of its similarities to all other nodes within the same
cluster. For each cluster, set the node that has the maximum simi-
larity sum as the new prototype node.

The second algorithm is a random strategy for networks with
limited initial data or with a large number of nodes. We first select
B nodes from the entire n nodes randomly, and then keep removing
the prototype nodes that are too similar to each other and replacing
them with new random nodes. The similarities are based on the
initial attributed network.

3.3 Query Selection Algorithm
We have proposed to learn the expert cognition by linking nodes
with their most similar prototype nodes. In such way, we formulate
the query selection problem as a node selection task. The goal is
to find K effective nodes to maximize the total amount of expert
cognition contained in the learned cognition edges.

An intuitive solution is to greedily return the top K important
nodes [26], aiming to make the learned cognition edges more mean-
ingful. However, this might not end up with a good result. Because
important nodes tend to have more edges included in the initial
network [25], and the learned cognition edges would become less
influential. It also fails to take other information into consideration,
such as the feedback from the oracle and the node attributes.

3.3.1 Exploitation and Exploration Trade-off. To find theK effec-
tive nodes, we first formally define the problem. Let ri,k denote the
amount of expert cognition contained in the kth returned answer,
referred as reward. Here i denotes the kth node we have queried.
We have no access to the reward ri,k before asking the kth query.
The goal is to maximize the total rewards after all K queries, i.e.,

maximize
i ∈P1

JK =
∑K

k=1
ri,k , (1)

where Pk denotes the query pool in the kth iteration. In the first
iteration, the initial P1 has (n − B) nodes since we have employed
B nodes as prototype nodes. For the node that is already selected
previously, its reward is 0 since no new cognition edge would be
added. We remove it from the pool and get the Pk+1.

In the beginning, we have limited information about the rela-
tion between the node i and ri,k . Therefore, when performing the
querying, we aim to not only maximize the learned expert cogni-
tion in the current trial, but also explore the system to optimize
the incoming iterations. To tackle this exploration and exploitation
trade-off and maximize the total rewards JK , we propose a novel
contextual bandit [21, 47] algorithm to perform the node selection.

3.3.2 Contextual Bandit Algorithm. Our main idea is to assume
that nodes within the same cluster share the same model that mea-
sures their relations to the rewards. For nodes i ∈ P1, we cluster
them into d models, and define an information vector xi to describe
the property of each node i . We employ a linear function to model
the correlation between xi and ri,k , i.e.,

E[ri,k |xi] = xiθa + ηa , (2)

where a ∈ {1, 2, . . . ,d } denotes the cluster that node i belongs to,
and ηa is a random noise with Gaussian distribution N (0,σ 2

a).
We aim to maximize JK by conducting two processes for K

iterations as follows. In iteration k : (1) We choose a node i ∈ Pk
with the maximum expectation to get higher JK . It is based on all
the learned θa , for a = 1, 2, . . . ,d . (2) After querying the selected
node i , we would get a reward ri,k from the oracle. Based on ri,k
and xi , we update the θa , aiming to improve the node selection
strategy, where a is the cluster that node i belongs to.

We now introduce the details. There are three types of informa-
tion dominate node i , i.e., network structure, node attributes, and
correlations to the B prototype nodes. We define xi ∈ R1×(d+2) as,

xi = [hi ,maxSimi(i),Corr(i)], (3)

where hi is the attributed network embedding representation of
node i , and maxSimi(i) denotes the maximum similarity from node
i to all B prototype nodes. Corr(i) denotes the average of the cor-
relations between node i and all prototype nodes. To make the
algorithm efficient, in this paper, xi is fixed from the initialization.
It is flexible to explore dynamic frameworks that update xi in every
iteration. Both the distance and correlation are based on the cosine
similarities in the initial embedding representation space H0.

We now focus on each cluster a. Let Ya ∈ Ry×(d+2) be a matrix
that collects the information vectors of the y queried nodes in
cluster a. Let ya ∈ Ry×1 denote the corresponding y rewards. By
leveraging ridge regression to estimate θa and adding a penalty
term λ to improve the estimation performance, we have,

θ̂a = (Y⊤a Ya + λI)
−1Y⊤a ya . (4)

Then for any δ > 0, with probability at lease 1 − δ , the expectation
of the reward of selecting a node i in cluster a is bounded by [43],

xi θ̂a − α fa (i) ≤ E[ri,k |xi] ≤ xi θ̂a + α fa (i), (5)

where α = 1 +
√
ln(2/δ)/2 is a constant, and

fa (i) ≜
√
xi (Y⊤a Ya + λI)−1x⊤i . (6)

The work of [2, 3] have shown that choosing the node maxi-
mizing the upper confidence bound xi θ̂a + α fa (i) in each iteration
achieves the best performance in maximizing JK . The key idea is,
when a node with large xi θ̂a is chosen, a high reward is expected,
and such trial is an exploitation process. When a node with large
α fa (i) is chosen, this high variance means that we have limited

knowledge on the model for cluster a, thus, we explore it more in
the current trial. Jointly maximizing xi θ̂a+α fa (i) makes a trade-off
between exploitation and exploration. As a conclusion, in iteration
k , the best node i for querying could be computed as follows.

maximize
i ∈Pk

д(i) = xi θ̂a + α fa (i). (7)

3.4 Expert Cognition Quantization
We have defined the amount of expert cognition included in the kth
returned answer as ri,k . We now introduce how to quantify it. The
key idea of our proposed metric is that incorporating more expert
cognition could reduce the disagreements between the network
proximity and node attribute proximity. Given a new node, experts
usually jointly consider different types of information to get a
comprehensive understanding, including its relation network and
node attributes. It matches the observation that node attributes
often highly tie in with the topological structure [24, 41]. However,
in the data, there always exist some disagreements between the
two sources, and we quantify them as follows.

P = |S(U
(G)) − S(U

(A)) |, (8)

where | · | calculates each absolute value. U(G) and U(A) are the em-
bedding representations of the initial network and node attributes.
We embed them to alleviate the effect of noise and missing data. Let
j be the most similar prototype node of i based on the answer. Since
adding a cognition edge (i, j) could alleviate the disagreement, we
quantify the learned expert cognition in the kth iteration as,

ri,k = pi j . (9)

3.5 Network Embedding with Expert Cognition
We introduce a simple attributed network embedding algorithm
based on spectral embedding [25, 42]. It should be noted that NEEC
can be generalized to advance different embedding algorithms.

3.5.1 Network embedding. Network embedding [10, 30, 38] aims
to use a low-dimensional vector representation ui to map each node
i , such that all the network proximity could be preserved in U. The
main idea of the spectrum technique is to enforce nodes i and j with
larger proximity si j to be closer to each other in the embedding
space. It can be achieved by minimizing the loss function Jspec, i.e.,

Jspec =
1
2

∑n

i, j=1
si j ∥

ui
√
di
−

uj√
dj
∥22 , (10)

where si j is the proximity in S(G) . di is the sum of the ith row of S(G) ,
and it is employed for normalization. ui needs to be orthonormal to
avoid being arbitrary. We could further rewrite it as a maximization
problem by defining JG = 1 − Jspec, i.e.,

maximize
U(G)

JG = Tr(U(G)⊤L (G)U(G))

subject to U(G)⊤U(G) = I,
(11)

where L (G) = D(G)−
1
2 S(G)D(G)−

1
2 is the graph Laplacian [42]. D(G)

is the degree matrix of S(G) , with di in the diagonal.
Similarly, we apply the same technique to the node attribute

information A, and calculate its embedding representation U(A) by
maximizing JA = Tr(U(A)⊤L (A)U(A)), with U(A)⊤U(A) = I.

Algorithm 1: Network Embedding with Expert Cognition
Input: G, A, d , B, K , β , the oracle.
Output: Cognition informed representation H.

1 Select B prototype nodes via k-medoids or random strategy;
2 Set the remaining nodes as P1 and split them into d clusters;
3 Collect the information vectors of nodes in P1 based on Eq. (3);
4 Calculate P based on Eqs. (8) and (11);
5 Calculate initial representation H0 based on Eq. (13);
6 Set all the Qa ← λI, qa ← 0, and calculate all the д(i);
7 for k = 1 : K do
8 Choose node the i with maximum д(i);
9 Query the oracle node i and get the answer;

10 Incorporate node i’s cognition edge to G;
11 Calculate ri,k based on Eq. (9);
12 Update Qa ← Qa + x⊤i xi and qa ← qa + ri,kx⊤i ;
13 Remove node i from the set Pk and get Pk+1;

14 For nodes in cluster a, set д(i) ← xiQ−1a qa + α
√
xiQ−1a x⊤i ;

15 Calculate cognition informed H based on current G and A.

3.5.2 Jointly Embed Network and Node Attributes. In many real-
world networks such as social media, the topological structure and
node attributes influence each other and are inherently correlated.
The homophily hypothesis [24] and social influence theories [41]
demonstrate that similar nodes tend to bond and connect with each
other. Therefore, jointly learning from the two information sources
could draw towards a better embedding representationH. We apply
a simple strategy to assimilate the two heterogeneous information
towards a joint node proximity as follows.

S(H) = βS(G) + (1 − β)S(A), (12)

where β balances the contributions of network and node attributes.
Similarly, we could define the Laplacian L (H) = D(H)−

1
2 S(H)D(H)−

1
2 ,

where D(H) is the degree matrix of S(H) , and apply the normalized
spectral embedding technique to learn H as follows,

maximize
H

J = Tr(H⊤L (H)H)

subject to H⊤H = I.
(13)

3.5.3 Embed the Learned Expert Cognition. We summary the
processes of NEEC in Algorithm 1. Given an attributed network
with G and A, we first select B prototype nodes and set the remain-
ing nodes as the initial query pool P1. To choose the optimal K
nodes from P1, we perform a contextual bandit algorithm based
on Eq. (7). It has two items that are not necessary to be computed
from scratch. We denote them as follows.

Qa = Y⊤a Ya + λI, and qa = Y⊤a ya . (14)

Thus, in each iteration k , we update them according to the rules in
line 12. Then we select the node with the maximum explanation
upper confidence bound as defined in Eq. (7). After querying the
oracle, we incorporate the answer intoG as a cognition edge. When
all the budget is used, we apply an attributed network embedding
method to the current network G and A, and jointly embed them
towards a more informative cognition informed representation H.

4 EXPERIMENTS
We apply NEEC on three real-world attributed networks to demon-
strate its effectiveness and generalizability. In the experiments, we
target to investigate three questions. (1) How effective are the pro-
posed prototype-based form of queries and the query selection
algorithm? (2) Could the learned expert cognition be used to im-
prove different embedding methods? (3) What are the impacts of
the parameters B, K , and d , on the expert cognition learning?

4.1 Datasets
We now introduce the three datasets. They are all publicly available,
and their statistical information is listed in Table 2.
BlogCatalog [20] is a social networking service that helps people
share blogs. The bloggers can interact with each other and form
a network. They could also have a list of keywords to describe
their blogs, which are employed as node attributes. We leverage
the predefined groups that each blogger subscribed as the labels.
Flickr [20] is a photo and video sharing service. Users follower
each other and form a big community. We sampled 7,575 users to
construct a network. Node attributes of each user is defined as the
list of tags of interest specified by him/her. Users could also join
some predefined groups, thus we employ them as labels.
ACM [39] dataset collects a citation network for papers published
before 2016. We select papers in nine areas as follows. Artificial In-
telligence (AAAI, IJCAI, etc.), Computer Vision (TPAMI, CVPR, etc.),
Computational Linguistics (ACL, EMNLP, etc.), Data Mining (KDD,
WSDM, etc.), Databases (VLDB, TKDE, etc.), Human Computer
Interaction (CHI, UIST, etc.), Information Retrieval (CIKM, SIGIR,
etc.), Machine Learning (ICML, COLT, etc.), Robotics (ICRA, IROS,
etc.). We make the network undirected since it is too sparse for
spectral embedding. We apply the bag-of-words model to represent
the abstracts as node attributes and employ areas as labels.

4.2 Experimental Settings
To create the oracle, for each dataset, we randomly sample a certain
percentage of the entire edges and attributes as the initial attributed
network. The remaining data is considered as the cognition of the
oracle, so he/she answers the queries based on the entire original
dataset. The oracle determines the most similar prototype nodes
based on the similarity of the original node attributes. Then the
expert cognition learning methods could be employed to query the
oracle and enhance the initial networks. A network embedding or
attributed network learning method would be applied to both the
initial network and the learned network. In such way, we are able
to evaluate the amount of learned expert cognition by measuring
the performance improvement of the embedding representation.

To evaluate the performance of embedding representations, we
follow the traditional way [30, 38] to apply it to the node classifi-
cation task [34, 49]. The goal is to predict the labels of new nodes
based on the training nodes that have labels. We use 5-fold cross-
validation. The nodes are randomly separated into two groups,
training and test groups. The labels of nodes in test group are set
as ground truth. We apply the embedding method to the entire
attributed network and learn an embedding representation H. It
contains the vector representations of nodes in both training and
test groups, and we split it into Htrain and Htest. For each of the

Table 2: Statistical information of the datasets.

Nodes Edges Density Attributes Label

BlogCatalog 5,196 171,743 1.27e−002 8,189 6
Flickr 7,575 239,738 8.36e−003 12,047 9
ACM 16,484 71,980 5.30e−004 8,337 9

label category, we learn a binary Support Vector Machine (SVM)
classifier based on Htrain and labels of nodes in the training group.
By using these trained classifiers and Htest, we predict the labels of
nodes in the test group.

We use two widely adopted evaluation criteria to measure the
performance of a representation in the node classification task,
i.e., macro-average and micro-average [16]. The former one is the
arithmetic average of F-measure of all label categories. F-measure
is a commonly used metric in binary classification. The latter one
is the harmonic mean of precision and recall. If it is not specified,
we set d = 100 and B = 9. All results are the means of ten test runs.

4.3 Effectiveness of NEEC
To study the first question proposed at the beginning of this section,
we compare NEECwith three types of baselines. First, to investigate
the effectiveness of the proposed prototype-based form of queries,
we include RandomPair, LinkPredict, and AddKEdges. Second, to
demonstrate the effectiveness of the proposed way of formulating
expert cognition, we include HiddenEdge. Third, to study the ef-
fectiveness of the proposed query selection algorithm, we include
a variation of NEEC, i.e., w/o_Bandit. For NEEC, we include both
k-medodis and random prototype node selection algorithms. The
details of them are described as follows.
• RandomPair: No prototype node is defined. It randomly se-
lects B +K unconnected node pairs for querying. The oracle
will indicate an edge, if the two nodes are linked in the origi-
nal dataset or have an original node attribute similarity that
is greater than a threshold.
• LinkPredict: Similar to RandomPair, but the B + K pairs are
selected from the unconnected pairs based on the probabil-
ities of having edges, which are based on the weighted-ℓ1
edge features [10] in spectral embedding space.
• HiddenEdge: It queries the oracle based on prototype nodes,
but without using the cognition edges. It adds edges between
the selected node i and any prototype nodes that have latent
relationships with i or are highly similar to i .
• w/o_Bandit: NEEC without using the proposed query selec-
tion algorithm. It chooses the top K important nodes with
the maximum eigenvector centrality [26].
• AddKEdges: It randomly queries the oracle a large number of
node pairs until K edges were added. This baseline unfairly
takes much more human effort than all others.

4.3.1 Form of Queries Investigation. To study the effectiveness
of querying with prototype nodes, we compare NEECwith Random-
Pair, LinkPredict, and AddKEdges. All these three baselines query
the oracle without a prototype. For RandomPair and LinkPredict,
the total number of queries is set as B+K , such that the oracle needs
to check at least B+K nodes and pay more effort than in NEEC. Ad-
dKEdges needs to make an extremely large number of queries. The

Table 3: The classification performance of different methods on the three datasets in terms of micro-average when d = 100.
BlogCatalog Flickr ACM

Training 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%
Node Num 1,455 2,078 3,118 5,196 2,121 3,030 4,545 7,575 4,616 6,594 9,890 1,6484

K 242 495 1,114 3,092 338 691 1,556 4,316 348 709 1,598 4,435

Initial 0.287 0.359 0.430 0.520 0.261 0.304 0.358 0.432 0.232 0.270 0.319 0.400
RandomPair 0.286 0.358 0.431 0.520 0.261 0.306 0.365 0.435 0.231 0.267 0.317 0.412
LinkPredict 0.287 0.360 0.430 0.523 0.261 0.303 0.359 0.433 0.230 0.278 0.310 0.392
AddKEdges 0.312 0.379 0.462 0.547 0.255 0.312 0.363 0.457 0.258 0.300 0.380 0.508
HiddenEdge 0.298 0.370 0.437 0.529 0.265 0.301 0.363 0.436 0.232 0.275 0.322 0.418
w/o_Bandit 0.295 0.366 0.447 0.556 0.259 0.326 0.368 0.439 0.238 0.265 0.306 0.391
NEEC_Rand 0.317 0.393 0.463 0.558 0.277 0.367 0.433 0.508 0.235 0.288 0.355 0.447
NEEC_Kmed 0.313 0.389 0.469 0.571 0.281 0.364 0.443 0.515 0.242 0.284 0.363 0.445

RandomPair −0.47% −0.27% 0.07% −0.07% 0.04% 0.87% 1.87% 0.64% −0.59% −1.35% −0.63% 3.11%
LinkPredict −0.03% 0.35% −0.07% 0.41% 0.00% −0.36% 0.15% 0.15% −0.80% 2.90% −2.92% −2.09%
AddKEdges 8.43% 5.55% 7.36% 5.14% −2.28% 2.79% 1.20% 5.83% 10.85% 10.96% 19.23% 27.00%
HiddenEdge 3.61% 3.06% 1.52% 1.68% 1.60% −0.80% 1.41% 0.81% −0.26% 1.81% 0.93% 4.56%
w/o_Bandit 2.64% 2.06% 3.82% 6.75% −0.80% 7.43% 2.61% 1.58% 2.30% −2.07% −4.13% −2.17%
NEEC_Rand 10.41% 9.63% 7.69% 7.27% 6.24% 20.87% 20.78% 17.43% 1.07% 6.74% 11.25% 11.66%
NEEC_Kmed 9.03% 8.34% 9.01% 9.67% 7.64% 19.78% 23.60% 19.22% 4.26% 5.16% 13.71% 11.30%

Table 4: The computation time of each iteration in NEEC.

Dataset BlogCatalog Flickr ACM

Average Time (s) 2.97e−003 8.02e−003 2.28e−002

classification performance w.r.t. micro-average is shown in Table 3.
All of them use the same embedding algorithm in Section 3.5. From
the results, we observe that NEEC outperforms all the baselines
on all the three datasets. For instance, on Flickr, both RandomPair
and LinkPredict have almost no improvement, while NEEC_Kmed
achieves 19.22% improvement comparing with the embedding of
the initial attributed network. Even though AddKEdges performs a
large number of queries, NEEC improves more on BlogCatalog and
Flickr. On ACM, NEEC achieves less improvement. The reason is
that AddKEdges needs to perform up to 9.4 × 106 queries.

To further investigate the performance of NEEC under differ-
ent training percentages, i.e., the percentage of data in training
group that has been used, we vary it from 10% to 100%. The results
in Table 3 show that NEEC consistently achieves higher perfor-
mance than all baselines except AddKEdges. For instance, when the
training percentage is 25% on Flickr, NEEC_Rand achieves 20.87%
improvement. It also demonstrates that the prototype-based form
of queries is effective in learning expert cognition.

4.3.2 Effectiveness of Cognition Edge Investigation. To study the
effectiveness of the proposed way of transforming expert cognition
into concrete data, we compare NEEC with HiddenEdge, which
models the expert cognition as latent edges. Their performance
in items of different training percentage is summarized in Table 3.
As we can see, HiddenEdge achieves limited improvement. For
instance, NEEC_Kmed achieves 9.67% while HiddenEdge achieves
1.68%, when the training percentage is 100% on BlogCatalog. It
demonstrates the effectiveness of the proposed cognition edges.

4.3.3 Prototype Node Selection andQuery Selection Algorithms
Investigation. We provide two algorithms to select the prototype
nodes, i.e., NEEC_Rand and NEEC_Kmed. As shown in Table 3,

NEEC_Rand might achieve slightly better performance when the
training percentage is 10% or 25%. It is because when the number
of nodes is small, the initial information would be too limited to
perform the clustering well in NEEC_Kmed.

To study the effectiveness of our contextual bandit algorithm
in query selection, we compare NEEC with w/o_Bandit. The per-
formance with respect to different training percentage is shown
in Table 3. From the results, we find that NEEC achieves more im-
provement. For example, on Flickr, NEEC_Rand achieves 17.43%
improvement while w/o_Bandit achieves 1.58% improvement.

4.3.4 Effectiveness and Efficiency of NEEC Investigation. Up till
now, we have demonstrated the effectiveness of each component of
NEEC. The number of queries we performed also demonstrates the
effectiveness of NEEC. We summarize the number of queries K and
performance improvement in Table 3. As we can see, NEEC achieves
significant improvement with a small number of queries. For exam-
ple, NEEC_Kmed achieves 19.78% improvement by conducting 691
queries in a network with 3,030 nodes on Flickr.

NEEC is also an efficient interactive system that could respond
the oracle immediately. The average computation time of each
iteration in NEEC is shown in Table 4. For example, on Flickr,
NEEC needs 8.02 milliseconds to update the system and compute a
new query. It verifies the efficiency of NEEC.

4.4 Generalizability Evaluation
We now answer the second question that how general is the expert
cognition learning framework NEEC. We include two network em-
bedding methods, i.e., Spectrum and DeepWalk, and two attributed
network embedding methods, i.e., AANE and LANE, as baselines.

• Spectrum [42]: It performs spectral embedding on the pure
topological structure to evaluate the amount of information
that we have learned in the network space.
• DeepWalk [30]: It makes an analogy between random walks
on a graph and sentences in a document, and embed the
paths via language modeling techniques.

9% 12% 18% 24%

Figure 2: The classification performance of five embedding methods before & after incorporating the expert cognition.

B: Prototype Node Num (K/n): Query Num/Node Num d=20 d=60 d=100 d=140 d=180

Figure 3: Performance improvement of embeddingmethods after incorporating the expert cognitionwith parameters varying.

• AANE [14]: It performs embedding based on the factorization
of node attribute proximity and penalty of difference in the
vector representations of highly correlated nodes.
• LANE [15]: It is used for incorporating labels into network
embedding. We set the labels as zeros. It jointly embeds the
network and node attributes by maximizing their correla-
tions based on the spectral embedding.

The performance of the five embedding methods before and after
incorporating the expert cognition is shown in Figure 2. We omit
the result on ACM since we obtain similar observations. From the
figure, we find that all the five embedding methods have significant
performance improvements after incorporating the expert cogni-
tion. For example, DeepWalk achieves 14.60% improvement and
LANE achieves 15.29% improvement on BlogCatalog. We further in-
crease one-third of the sample percentage for the initial network to
study its impact. From the results in Figure 2, the same observations
are observed, i.e., all the five methods have significant performance
improvements after incorporating the expert cognition. We also
find that the amount of improvement decreased. This can be ex-
plained by the fact that, as the sample percentage increases, the
amount of knowledge that the oracle obtained decreases.

4.5 Parameter Analysis
We now study the impacts of the number of prototype nodes B, the
number of queries K , and the embedding representation dimension
d . The performance improvement w.r.t. B and K

n after incorporat-
ing the expert cognition is shown in Figure 3. As we can see, the
performance improvement increases as B increases on all the three
datasets. It is because more prototypes tend to create more accurate
cognition of nodes. But it also takes more human effort. The perfor-
mance improvement increases rapidly at the beginning and then
increases smoothly thereafter. Similar observations are made for
the parameter K . Larger query number means more expert cogni-
tion, but their correlation is not always linear. We also vary d to see

the performance improvement of the five embedding methods and
show the results in Figure 3. The gray bars denote the correspond-
ing performance improvement. We see that all methods perform
better after incorporating the cognition edges as d increases from
20 to 180. This also verifies the generalizability of NEEC.

5 RELATEDWORK
Attributed network embedding [14, 15, 49] attracts lots of attention
in recent years due to its effectiveness in modeling various informa-
tion systems. Qi et al. [31] advanced the latent semantic indexing
algorithm to jointly model the content similarity and context link
into a low-dimensional semantic space. Le and Lauw [18] proposed
to learn a joint low-dimensional representation for networked docu-
ments by incorporating a topic model into the network embedding.
Chang et al. [6] considered the content as a network and embedded
it along with the original network jointly via the deep learning. Sev-
eral coupled matrix factorization based models [46, 49] also have
been developed to assimilate these two sources of information.

Our work is also related to pool-based active learning [35, 36],
which learns from the oracle by inquiring labels. It aims to select
a number of unlabeled instances from a pool, such that the clas-
sification performance could be maximized by using the labels of
selected instances. The typical methods are based on uncertainty
sampling [19, 40], query by committee [23], expected error and
variance reduction [11], or expected model change [36]. Several
efforts [4, 5] also have been devoted to balancing exploration and
exploitation based on the multi-armed bandit algorithms.

Multi-armed bandit algorithms [2, 3] are widely used to perform
online human behavior or knowledge learning. Radlinski et al. [32]
exploited a bandit algorithm to conduct an online document ranking
that can learn from users behavior. Several contextual bandit based
personalized recommendation frameworks [21, 44, 47] have been
developed to incorporate dynamic content and user information.

6 CONCLUSIONS AND FUTUREWORK
Expert cognition is an essential type of knowledge that could ad-
vance various real-world data analysis tasks such as attributed
network embedding. Learning and modeling expert cognition is
promising but challenging as it is often abstract, diverse, and labori-
ous to obtain. To fill the gap, we study a novel problem of exploring
expert cognition for attributed network embedding and develop
a general framework NEEC. Instead of directly modeling expert
cognition, we learn it from the oracle by performing a number of
concise but effective queries. The queries are carefully designed
based on the exemplar theory and prototype theory, and system-
atically selected via a contextual bandit algorithm. Based on the
returned answers from the oracle, the meaningful but abstract ex-
pect cognition is modeled as new cognition edges, which could be
directly added into the network. Thus, the learned expert cognition
could be incorporated into the latent representation by any embed-
ding algorithm. Experiments on real-world datasets demonstrate
the effectiveness and generalizability of NEEC. As the future work,
we plan to study some open questions. (1) NEEC models the rela-
tion between queries and rewards via linear functions. How can
we extend it to more general ones to improve the performance? (2)
The returned answers change the network dynamically. How can
we take it into consideration to advance the query selection?

ACKNOWLEDGMENTS
This work is, in part, supported by DARPA (#N66001-17-2-4031) and
NSF (#IIS-1657196 and #IIS-1718840). The views, opinions, and/or
findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

REFERENCES
[1] Elke Achtert, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. 2013. Inter-

active Data Mining with 3D-parallel-coordinate-trees. In SIGMOD. 1009–1012.
[2] Rajeev Agrawal. 1995. Sample Mean Based Index Policies by O(log n) Regret for

the Multi-armed Bandit Problem. Advances in Applied Probability 27, 4 (1995),
1054–1078.

[3] Peter Auer. 2002. Using Confidence Bounds for Exploitation-exploration Trade-
offs. JMLR 3 (2002), 397–422.

[4] Yoram Baram, Ran El-Yaniv, and Kobi Luz. 2004. Online Choice of Active Learning
Algorithms. JMLR 5 (2004), 255–291.

[5] Djallel Bouneffouf, Romain Laroche, Tanguy Urvoy, Raphael Féraud, and Robin
Allesiardo. 2014. Contextual Bandit for Active Learning: Active Thompson
Sampling. In ICONIP. 405–412.

[6] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, and
Thomas S. Huang. 2015. Heterogeneous Network Embedding via Deep Ar-
chitectures. In KDD. 119–128.

[7] Robert Davies-Jones. 2015. A review of supercell and tornado dynamics. Atmo-
spheric Research 158–159 (2015), 274–291.

[8] Gerald DeJong and Shiau Hong Lim. 2011. Explanation-based Learning. Encyclo-
pedia of Machine Learning (2011), 388–392.

[9] Xiaowen Ding, Bing Liu, and Philip S. Yu. 2008. A Holistic Lexicon-based Ap-
proach to Opinion Mining. In WSDM. 231–240.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[11] Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. 2006. Large-scale Text Catego-
rization by Batch Mode Active Learning. In WWW. 633–642.

[12] Andreas Holzinger. 2016. Interactive Machine Learning for Health Informatics:
When doWeNeed the Human-in-the-loop? Brain Informatics 3, 2 (2016), 119–131.

[13] Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. 2013. Unsupervised Sentiment
Analysis with Emotional Signals. In WWW. 607–618.

[14] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated Attributed Network
Embedding. In SDM. 633–641.

[15] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label Informed Attributed Network
Embedding. In WSDM. 731–739.

[16] Ling Jian, Jundong Li, Kai Shu, and Huan Liu. 2016. Multi-label Informed Feature
Selection. In IJCAI. 1627–1633.

[17] Waldemar Karwowski. 2001. International Encyclopedia of Ergonomics and Human
Factors. CRC Press.

[18] Tuan M. V. Le and Hady W. Lauw. 2014. Probabilistic Latent Document Network
Embedding. In ICDM. 270–279.

[19] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training
Text Classifiers. In SIGIR. 3–12.

[20] Jundong Li, Xia Hu, Jiliang Tang, and Huan Liu. 2015. Unsupervised Streaming
Feature Selection in Social Media. In CIKM. 1041–1050.

[21] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-
bandit Approach to Personalized News Article Recommendation. In WWW.
661–670.

[22] Ninghao Liu, Xiao Huang, and Xia Hu. 2017. Accelerated Local Anomaly Detec-
tion via Resolving Attributed Networks. In IJCAI. 2337–2343.

[23] Andrew McCallum and Kamal Nigam. 1998. Employing EM and Pool-based
Active Learning for Text Classification. In ICML. 350–358.

[24] Miller McPherson, Lynn Smith-Lovin, and James M. Cook. 2001. Birds of a
Feather: Homophily in Social Networks. Annual Review of Sociology 27, 1 (2001),
415–444.

[25] Hariharan Narayanan, Mikhail Belkin, and Partha Niyogi. 2006. On the Relation
Between Low Density Separation, Spectral Clustering and Graph Cuts. In NIPS.
1025–1032.

[26] M. E. J. Newman. 2003. The Structure and Function of Complex Networks. SIAM
Rev. 45, 2 (2003), 167–256.

[27] M. E. J. Newman. 2006. Modularity and Community Structure in Networks. In
PNAS, Vol. 103. 8577–8582.

[28] Robert M. Nosofsky. 1986. Attention, Similarity, and the Identification-
categorization Relationship. Journal of Experimental Psychology: General 115, 1
(1986), 39–57.

[29] Hae-Sang Park and Chi-Hyuck Jun. 2009. A Simple and Fast Algorithm for
K-medoids Clustering. Expert Systems with Applications 36, 2 (2009), 3336–3341.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In KDD. 701–710.

[31] Guo-Jun Qi, Charu Aggarwal, Qi Tian, Heng Ji, and Thomas S. Huang. 2012.
Exploring Context and Content Links in Social Media: A Latent Space Method.
TPAMI 34, 5 (2012), 850–862.

[32] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning Diverse
Rankings with Multi-armed Bandits. In ICML. 784–791.

[33] Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, and Penny
Boyes-Braem. 1976. Basic Objects in Natural Categories. Cognitive Psychology 8,
3 (1976), 382–439.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI magazine
29, 3 (2008), 93–106.

[35] Burr Settles. 2009. Active Learning Literature Survey. CS Technical Reports.
University of Wisconsin–Madison.

[36] Burr Settles and Mark Craven. 2008. An Analysis of Active Learning Strategies
for Sequence Labeling Tasks. In EMNLP. 1070–1079.

[37] Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly Voll, and Manfred Stede.
2011. Lexicon-based Methods for Sentiment Analysis. Computational Linguistics
37, 2 (2011), 267–307.

[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[39] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
miner: Extraction and Mining of Academic Social Networks. In KDD. 990–998.

[40] Simon Tong and Daphne Koller. 2001. Support Vector Machine Active Learning
with Applications to Text Classification. JMLR 2 (2001), 45–66.

[41] Oren Tsur and Ari Rappoport. 2012. What’s in a Hashtag? Content Based Predic-
tion of the Spread of Ideas in Microblogging Communities. In WSDM. 643–652.

[42] Ulrike von Luxburg. 2007. A Tutorial on Spectral Clustering. Statistics and
Computing 17, 4 (2007), 395–416.

[43] Thomas J. Walsh, István Szita, Carlos Diuk, and Michael L. Littman. 2009. Explor-
ing Compact Reinforcement-learning Representations with Linear Regression.
In UAI. 591–598.

[44] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2016. Learning Hidden
Features for Contextual Bandits. In CIKM. 1633–1642.

[45] Adam B Wilcox and George Hripcsak. 2003. The Role of Domain Knowledge in
Automating Medical Text Report Classification. JAMIA 10, 4 (2003), 330–338.

[46] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. 2015.
Network Representation Learning with Rich Text Information. In IJCAI. 2111–
2117.

[47] Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. 2016. Online
Context-aware Recommendation with Time Varying Multi-armed Bandit. In
KDD. 2025–2034.

[48] Yongfeng Zhang. 2015. Incorporating Phrase-level Sentiment Analysis on Textual
Reviews for Personalized Recommendation. In WSDM. 435–440.

[49] Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. 2007. Combining Content
and Link for Classification Using Matrix Factorization. In SIGIR. 487–494.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Embedding with Expert Cognition
	3.1 Prototype-based Form of Queries
	3.2 Prototype Node Selection Algorithm
	3.3 Query Selection Algorithm
	3.4 Expert Cognition Quantization
	3.5 Network Embedding with Expert Cognition

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Effectiveness of NEEC
	4.4 Generalizability Evaluation
	4.5 Parameter Analysis

	5 Related Work
	6 Conclusions and future work
	Acknowledgments
	References

